# PARAGON Wall



#### **QUICK FACTS**

- Cooling, heating and ventilation
- $\,\circ\,$  Designed for installation in the rear edge of the room
- Integrated control equipment as an option
- One grille for both the supply air and the recirculated air
- $\circ\,$  Closed unit
- Flexible air flow VariFlow
- $\odot$  Adjustable air direction ADC
- $\circ\,$  CCO valve for maximum capacity

|       | Al    | R FLOW | *     |      | TOTA | L COOLI | NG CAP | ΑΟΙΤΥ     |
|-------|-------|--------|-------|------|------|---------|--------|-----------|
| 80 Pa |       | /s)    | m     | ³/h  | (\   | ∨)      | ()     | <b>N)</b> |
|       | No    | zzle   | No    | zzle | Var  | iant    | Var    | iant      |
| Size  | LL    | нн     | LL    | нн   | N    | IC      | F      | IC        |
| 775   | 11 24 |        | 39 87 |      | 404  | 582     | 413    | 621       |
| 900   | 13    | 29     | 46    | 104  | 475  | 703     | 487    | 749       |
| 1100  | 17    | 38     | 60    | 135  | 626  | 921     | 642    | 986       |
| 1300  | 20    | 45     | 72    | 161  | 759  | 1121    | 773    | 1189      |
| 1500  | 18    | 49     | 64    | 176  | 723  | 1201    | 779    | 1324      |

\* Air flow at max. 30 dB(A)

Pi = 80 Pa,  $\Delta T_i = 6K$ ,  $\Delta T_{mk} = 8.5K$ , Water; 0.05 l/s, 14°C in.



 $\mathsf{T}\,0320\text{-}28\,61\,81\,|\,\textbf{www.auerhaan-klimaattechniek.nl}$ 

Als het om lucht gaat.



### PARAGON Wall

# Contents

| Technical description                    | 3  |
|------------------------------------------|----|
| Outstanding features of the PARAGON WALL |    |
| comfort module                           |    |
| Basic function diagram                   |    |
| Nozzle setting                           |    |
| Optional Extras                          |    |
| CONDUCTOR Control equipment              |    |
| 6-way change over valve - CCO            |    |
| LUNA control equipment                   |    |
| Sizing                                   |    |
| Planning with ProSelect                  |    |
| Cooling                                  |    |
| Heating                                  |    |
| Acoustics                                | 19 |
| Accessories                              | 20 |
| Supply air kit – PARAGON T-SAK-VAV       | 20 |
| Supply air kit – PARAGON T-SAK-CAV       | 20 |
| Extract air kit – PARAGON T-EAK-VAV      | 21 |
| Extract air kit – PARAGON T-EAK-CAV      | 21 |
| Factory-fitted control equipment         | 23 |
| Installation                             | 24 |
| Connection of control equipment          | 25 |
| CONDUCTOR                                | 25 |
| Dimensions and weights                   | 26 |
| PARAGON WALL (R) Right connection        |    |
| PARAGON WALL (L) Left connection         |    |
| Dimensions, accessories                  |    |
| Ordering key                             |    |
| PARAGON WALL, Ordering key               |    |
| Available to order, kit and accessories  |    |
| Ordering key, Accessory kit              |    |
| Ordering Key, Accessories                |    |
| Specification text                       |    |
| specification text                       | 54 |

# **Technical description**

# PARAGON WALL Comfort module

Paragon Wall has been developed for creating a wellperforming indoor climate in offices where technical installations are meant to be located in the rear edge of the room.

Strong focus has been directed on a high degree of comfort, low installation costs as well as low running costs in this application. Since the Paragon Wall is driven by a central air handling unit, there is no built-in fan that would otherwise generate sound and require servicing. Through patent-pending technology, the built-in coil is optimally utilized which provides high cooling/heating capacity already while the air pressure and airflows are low.

By using the same grille for both the distribution of supplied air and the recirculation of room air, PARAGON WALL makes a technical installation outside the relevant room possible. This offers several important benefits. By utilising the space above the false ceiling in the adjoining corridor, service can be carried out in the corridor without the need for access to the room served by the unit. With only one grille to take into consideration, only one opening needs to be cut in the wall. PARAGON WALL is, of course, equipped with VariFlow and ADC for simple adjustment of the air flow and direction of air discharge. Vertical air discharge direction can also be set simply by adjusting the angle of the louvers in the grille.



Figure 1. PARAGON WALL



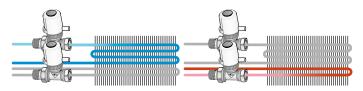
www.eurovent-certification.com www.certiflash.com

#### PARAGON WALL in a nutshell

- Plug & Play
- Factory-fitted control equipment is optional.
- Low sound level
- Draught-free indoor climate
- No fan in the room
- Dry system without condensation
- No need for any drainage system
- No filter
- Requires minimal maintenance
- Low energy consumption
- Flexible adjustment of the air volume (VariFlow)
- Guaranteed comfort through flexible adjustment of the direction of air discharge (ADC)



### **Outstanding features of the PARAGON WALL comfort module**

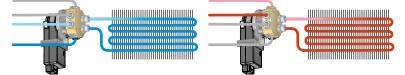

Paragon Wall is the name of a new comfort module that is part of the family of compact comfort modules and is designed especially for rear-edge location in office rooms.

The module is installed above the false ceiling in the corridor outside the room and requires no false ceiling inside the room. By using the same grille both for distribution of supply air and the recirculation of room air, only one grille is visible inside the room.

The Paragon Wall product family includes the following variants:

#### PARAGON Wall c B-NC

Normal capacity Paragon with 4 tube coil, that is separate cooling and heating coils




#### PARAGON Wall c B-HC (CCO)

Paragon Wall B-HC CCO is a high capacity variant of Paragon Wall where a CCO valve Compact Change Over is used to utilise the whole coil of both cooling and heating.

Advantages:

- Compact PARAGON Wall unit with high output means simpler project planning.
- Smaller units can be used. Lower investment cost and less space needed.
- Faster conditioning of a room that has been left empty. High and consistent comfort
- Permits a higher cooling water temperature and lower heating water temperature, which gives lower operating costs for the chiller and heat pump, i.e. less environmental impact.




Room control system CONDUCTOR is used to control the CCO valve.

For more information about the CCO valve, see the CCO product data sheet at www.swegon.se

#### PARAGON Wall c A-HC

High capacity Paragon for cooling only. The capacity of the heat exchanger is utilised optimally by maximising the cooling circuit through the coil.

- Lower energy consumption gives a lower operating cost and with that less environment impact.
- A smaller Paragon unit than before can be used, which results in a lower investment cost and more space for other installations
- The high output gives faster cooling of hotel rooms that have stood empty.



4



### **Basic function diagram**

#### Offices

The primary air is supplied via duct connection in the rear edge of the unit and this builds up positive pressure inside the unit. The positive pressure distributes the primary air with relatively high velocity via two rows of nozzle holes, one row in the upper edge and one row in the lower edge of the outlet. The high velocity of the primary air creates negative pressure which generates induction of the room air.

The recirculation air is sucked into the unit through the same grille that is used for distributing air into the room.

The recirculation air is then conveyed through the coil where it is cooled, heated, if required, or just passes untreated, before it mixes with the primary air and is discharged into the room.

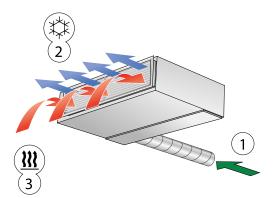



Figure 2. Cooling function Paragon Wall 1 = Primary air 2 = Primary air mixed with chilled room air 3 = Induced room air

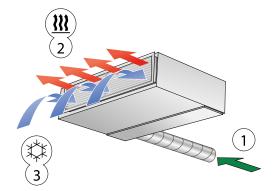



Figure 3. Heating function Paragon Wall 1 = Primary air 2 = Primary air mixed with heated room air

3 = Induced room air

The air is ideally distributed to office rooms by discharging it in a fan shape and utilising as much of the ceiling and any intermediate walls as possible for preventing draughts in the occupied zone.

Horizontal air distribution is achieved by means of the ADC (Anti-Draught Control) feature. If vertical air distribution is desirable, this is achieved by setting the outlet grille vanes to slant upward or downward.



Figure 4. Air distribution with the Paragon Wall in a separate office room

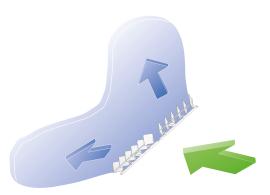
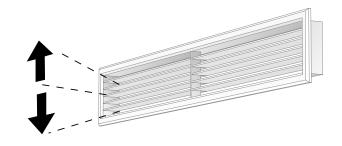
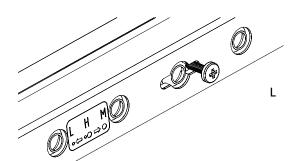




Figure 5 – Horizontal air distribution with ADC



*Figure 6. Vertical air distribution with adjustable louvres in the supply air grille.* 




# Nozzle setting

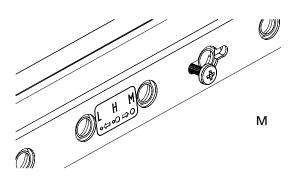



Figure 7. Adjusted nozzle L



Figure 8. Adjusted nozzle M





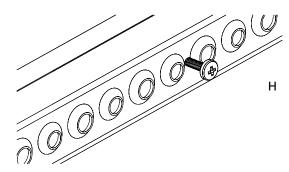





Figure 9. Nozzle H. Strip removed

Figure 10. Adjustment of nozzles L, M and H

(The strip for nozzle H has been removed)



# **Optional Extras** CONDUCTOR Control equipment

#### **Energy efficient**

The control equipment for the Paragon Wall in the standard version is based on the CONDUCTOR in order to save on energy to the fullest possible extent. The CONDUC-TOR is Swegon's in-house designed controller specially designed for controlling water-borne and airborne indoor climate systems.

The W4.1 application used in combination with the PARAGON WALL demand-controls both the room temperature and the air quality in the room. When someone is in the room, the functions of the controller adapt to provide comfort feed-back control. If no one is in the room, the controls activate the economy comfort mode, allowing the room temperature to deviate more from the preset setpoint. At the same time, the system reduces the air flow to the relevant room to a minimum in order to save fan energy. In addition, there are a number of other functions for both comfort and energy feed-back control coupled to temperature deviations, open/closed windows and possible condensation precipitation.

#### Communication

CONDUCTOR has been developed as a subsystem in Swegon's electrical and control equipment platform. The GOLD air handling units, used in combination with the Super WISE communication unit, offer unique opportunities for achieving energy-efficient applications all the way from the room level and up to the plant room.

The CONDUCTOR communicates via Modbus RTU Main control systems can access the entire list of parameters for both reading and writing values.

#### Simple installation and simple maintenance

Factory-fitted control equipment makes the installation work simple. All the necessary components are then easily accessible via an easy-to-remove inspection cover in the underside of the unit.

The room controller included in the supply communicates wirelessly or via wired connection to the comfort module controller. Wireless communication reduces the costs for running cables. On the other hand, a wired connection reduces the need for maintenance since the user then does not need to periodically replace batteries.

For more information regarding the CONDUCTOR, see separate product data sheet.




Figure 11. Factory-fitted control equipment CONDUCTOR W4.1

- 1 = Controller
- 2 = Room controller
- 3 = CCO valve and actuator (variant B-HC)

4 = Valves and valve actuators for cooling and heating water (variant B-NC and A-HC)

- 5 = Condensation sensor
- 6 = Pressure sensor
- 7 = Communication via Modbus RTU

#### Accessories, if required:

- 8 = Transformer
- 9 = Motorised ventilation damper
- 10 = External temperature sensor
- 11 = Window contact
- 12 = Key card holder or presence sensor



### 6-way change over valve - CCO

With CCO - Compact Change Over, the same single circuit in the coil is used for both heating and cooling, providing maximum utilisation of the coil and thus a higher cooling and heating capacity.

Advantages:

- A higher cooling water temperature and lower heating water temperature give improved operating economy for the chiller and heat pump. Lower energy consumption gives lower operating cost and less environment impact.
- Smaller PARAGON units can be used. Lower investment cost and less space needed.
- Faster conditioning of an office that has been left unoccupied. High and consistent comfort.
- Compact unit with high output means simpler project planning.

PARAGON together with the connectable control system CONDUCTOR make a very good comfort solution in offices. CONDUCTOR is also used to control the CCO valve.

If an occupancy detector is used and when this indicates occupancy, the air flow increases from the economical low flow to the normal flow, while the temperature adjusts to the comfort level.

When the room is empty, the ventilation and temperature return to economic low flow.

In addition to the automatic room control, the user can manually adjust the temperature and air flow.

In those cases where simple control without the possibility of connection is sufficient the more basic LUNA room control system can be used. The temperature can be regulated individually in each room, but the air flow is constant.

For more information about the CCO valve, see the CCO product data sheet at www.swegon.se

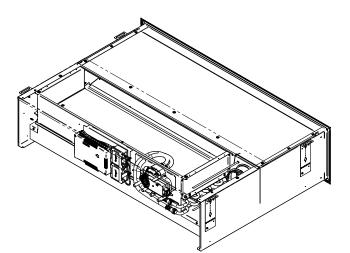



Figure 12. Factory-fitted CONDUCTOR with CCO valve PARAGON WALL B-HC

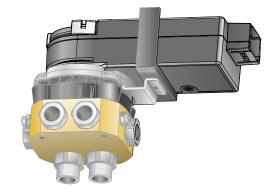



Figure 13. CCO 6-way valve



# LUNA control equipment

A simpler form of control equipment is available in applications where the user does not want demand-controlled ventilation in the room and has no need of communication with an external monitoring system. This variant of control is called LUNA and regulates the temperature in the room only (not the air quality). Paragon Wall with factory-fitted LUNA is available to order. Please note that the controller in this case is incorporated into the room controller and requires a cable connection from the room to the actuator and possibly to condensation sensor up inside the Paragon Wall. For more information, see the separate datasheet for the LUNA.

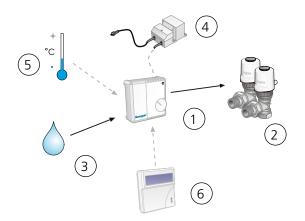
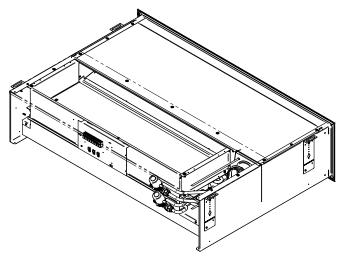


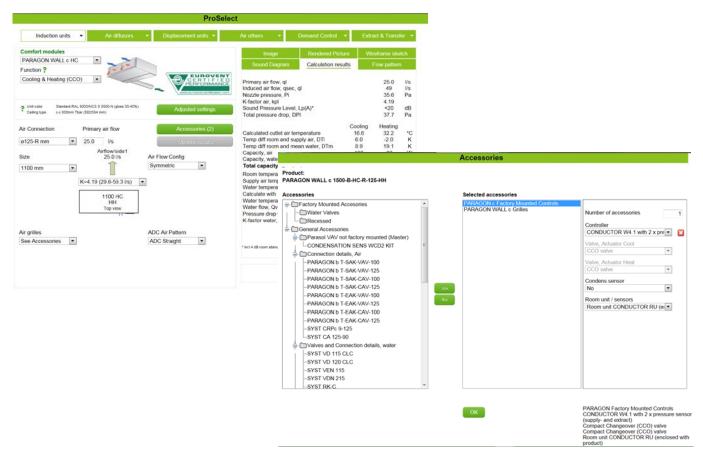

Figure 14. Factory-fitted control equipment LUNA

- 1 = Room controller with room thermostat
- 2 = Valves and valve actuators for cooling and heating water
- 3 = Condensation sensor

#### Accessories, if required:

- 4 = Transformer
- 5 = External temperature sensor
- 6 = Hand unit for changing the factory settings





Figure 15. Factory fitted LUNA-CH



| Sizing                                                                          | Recommended limit values, wa                               | ater                                   |
|---------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|
| Designations                                                                    | Max. recommended operating pressure (across coil only):    | 1600 kPa                               |
| P: Capacity (W, kW)                                                             | Max. recommended test pressure                             |                                        |
| v: Velocity (m/s)                                                               | (across coil only):                                        | 2,400 kPa                              |
| q: Flow (I/s)                                                                   | Max. recommended pressure drop<br>across a standard valve: | 20 kPa                                 |
| p: Pressure, (Pa, kPa)                                                          |                                                            |                                        |
| t <sub>r</sub> : Room temperature (°C)                                          | Max. recommended pressure drop<br>across the CCO valve     | 20 kPa                                 |
| t <sub>m</sub> : Mean water temperature (°C)                                    | Min. permissible heating water flow:                       | 0.013 l/s                              |
| $\Delta T_m$ : Temperature difference $[t_r - t_m]$ (K)                         | Max. permissible supply flow temperature                   | e: 60 °C                               |
| $\Delta T$ : Temperature difference, between inlet and return (K)               | Min. permissible cooling water flow:                       | 0.04 l/s                               |
| $\Delta T_{_{\rm I}}$ : Temperature difference, between room and supply air (K) | Lowest permissible supply flow                             |                                        |
| Δp: Pressure drop (Pa, kPa)                                                     | temperature:                                               | Should always<br>be dimensioned        |
| k <sub>p</sub> : Pressure drop constant<br>Supplementary index:                 |                                                            | so that the<br>system works<br>without |
| k = cooling, I = air, v = heating, i = commissioning                            |                                                            | condensation                           |

# **Planning with ProSelect**

Both planning and sizing are made easier by using Swegon's ProSelect Project design computer program. ProSelect is available at Swegon's home page: www.swegon.com.



Swegon

# Cooling

#### **Cooling capacity**

Cooling capacities achieved from both the primary air and chilled water for various lengths of unit and airflows are tabulated in Table 3-8. The total cooling capacity for one unit is the sum of the cooling capacity of the primary air and the chilled water.

The cooling capacity of the primary air can also be calculated using the formula:

#### $P_1 = 1.2 \cdot q_1 \cdot \Delta T_1$ where

 $P_{I}$  = Cooling capacity of the air (W)

 $q_I = Air flow (I/s)$ 

 $\Delta T_{I}$  = Temperature differential (K)

#### **Pressure drop**

The pressure drop on the water side can be calculated using the formula:

#### $\Delta p = (q / k_{pk})^2$ where

 $\Delta p$  = Pressure drop in the water circuit (kPa)

q = Water flow (I/s), see Diagram 1

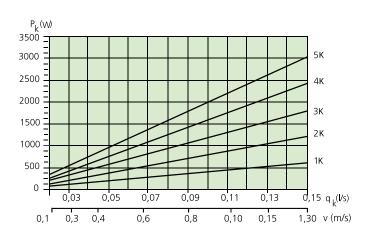
 $k_{nk}$  = Pressure drop constant read from table 1.

#### Table 1. Pressure drop, water

| Length | NC                      | HC                      | НС ССО                  |
|--------|-------------------------|-------------------------|-------------------------|
|        | K <sub>pk</sub> Cooling | K <sub>pk</sub> Cooling | K <sub>pk</sub> Cooling |
| 775    | 0.0250                  | 0.0230                  | 0.0178                  |
| 900    | 0.0231                  | 0.0214                  | 0.0170                  |
| 1100   | 0.0215                  | 0.0197                  | 0.0161                  |
| 1300   | 0.0205                  | 0.0185                  | 0.0154                  |
| 1500   | 0.0194                  | 0.0170                  | 0.0145                  |

NC - Normal design

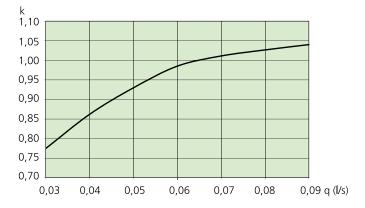
HC - High Capacity design


HC - High Capacity design with CCO valve

#### Table 2. The cooling capacity of natural convection

| The cooli | ng capa | acity of | f water | (W) at | ΔT <sub>mv</sub> |     |     |     |
|-----------|---------|----------|---------|--------|------------------|-----|-----|-----|
| Size      | 5       | 6        | 7       | 8      | 9                | 10  | 11  | 12  |
| 775       | 14      | 20       | 26      | 34     | 42               | 51  | 60  | 71  |
| 900       | 17      | 24       | 32      | 40     | 50               | 61  | 72  | 85  |
| 1100      | 22      | 31       | 41      | 53     | 65               | 79  | 94  | 110 |
| 1300      | 31      | 42       | 53      | 65     | 79               | 93  | 108 | 124 |
| 1500      | 40      | 52       | 64      | 78     | 92               | 107 | 122 | 138 |

#### **Diagram 1 – Cooling capacity**


The function between cooling capacity  $P_k$  (W), change in temperature  $\Delta T_k$  (K) and the cooling water flow  $q_k$  (I/s).



#### **Capacity correction**

Different water flows influence the available cooling effect to a certain degree. To calculate the actual cooling power based on a flow-dependant correction factor, use Swegon's ProSelect computer program, available at www. swegon.com.

#### Diagram 2. Water flow – capacity correction





|                          |             | Nozzle Air flow Sound Cooling capacity, Cooling capacity, water (W) at $\Delta T_{mk}^2$ |       |      |                             |     |     |                   |     |     |     |                                     |      |      |      |      |                 |
|--------------------------|-------------|------------------------------------------------------------------------------------------|-------|------|-----------------------------|-----|-----|-------------------|-----|-----|-----|-------------------------------------|------|------|------|------|-----------------|
| Length<br>of the<br>unit | Noz<br>sett |                                                                                          | Air f | low  | Sound<br>level <sup>1</sup> |     |     | capaci<br>air (W) |     |     | 2   | Pressure<br>drop con-<br>stant, air |      |      |      |      |                 |
| mm                       |             |                                                                                          | l/s   | m³/h | dB(A)                       | 6   | 8   | 10                | 12  | 6   | 7   | 8                                   | 9    | 10   | 11   | 12   | k <sub>pl</sub> |
| 775                      | L           | L                                                                                        | 12    | 43   | <20                         | 86  | 115 | 144               | 173 | 259 | 303 | 346                                 | 390  | 434  | 477  | 521  | 1.2             |
| 775                      | М           | Μ                                                                                        | 15.4  | 55   | 24                          | 111 | 148 | 185               | 222 | 286 | 332 | 378                                 | 423  | 469  | 514  | 560  | 1.54            |
| 775                      | Н           | Н                                                                                        | 27    | 97   | 29                          | 194 | 259 | 324               | 389 | 328 | 385 | 442                                 | 499  | 557  | 615  | 673  | 2.7             |
| 900                      | L           | L                                                                                        | 14.4  | 52   | <20                         | 104 | 138 | 173               | 207 | 311 | 364 | 416                                 | 468  | 521  | 573  | 626  | 1.44            |
| 900                      | М           | М                                                                                        | 18.5  | 67   | 25                          | 133 | 178 | 222               | 266 | 343 | 399 | 454                                 | 509  | 563  | 618  | 672  | 1.85            |
| 900                      | Н           | Н                                                                                        | 32.4  | 117  | 30                          | 233 | 311 | 389               | 467 | 394 | 462 | 531                                 | 600  | 669  | 739  | 809  | 3.24            |
| 1100                     | L           | L                                                                                        | 18.6  | 67   | 20                          | 134 | 179 | 223               | 268 | 406 | 474 | 543                                 | 611  | 679  | 748  | 816  | 1.86            |
| 1100                     | М           | Μ                                                                                        | 23.9  | 86   | 26                          | 172 | 229 | 287               | 344 | 448 | 520 | 592                                 | 663  | 735  | 806  | 877  | 2.39            |
| 1100                     | Н           | Н                                                                                        | 41.9  | 151  | 31                          | 302 | 402 | 503               | 603 | 513 | 603 | 692                                 | 782  | 873  | 964  | 1055 | 4.19            |
| 1300                     | L           | L                                                                                        | 22.2  | 80   | 21                          | 160 | 213 | 266               | 320 | 501 | 585 | 669                                 | 753  | 838  | 922  | 1007 | 2.22            |
| 1300                     | М           | Μ                                                                                        | 28.5  | 103  | 27                          | 205 | 274 | 342               | 410 | 552 | 641 | 730                                 | 818  | 906  | 994  | 1082 | 2.85            |
| 1300                     | Н           | Н                                                                                        | 50    | 180  | 32                          | 360 | 480 | 600               | 720 | 633 | 743 | 854                                 | 965  | 1077 | 1189 | 1301 | 5               |
| 1500                     | L           | L                                                                                        | 19.7  | 71   | <20                         | 142 | 189 | 236               | 284 | 494 | 574 | 653                                 | 732  | 811  | 889  | 968  | 1.97            |
| 1500                     | М           | М                                                                                        | 34.3  | 123  | 26                          | 247 | 329 | 412               | 494 | 605 | 704 | 802                                 | 900  | 998  | 1096 | 1194 | 3.43            |
| 1500                     | Н           | Н                                                                                        | 54.6  | 197  | 32                          | 393 | 524 | 655               | 786 | 696 | 810 | 924                                 | 1037 | 1150 | 1262 | 1375 | 5.46            |

#### Table 4 – Cooling capacity, NC, 150 Pa

| Length<br>of the<br>unit |   | zzle<br>ting | Air  | flow | Sound<br>level <sup>1</sup> |     |     | pacity,<br>· (W) ∆ |     |     | Coolir | ng capa | city, wa | iter (W) | at ∆T <sub>mk</sub> | 2    | Pressure<br>drop con-<br>stant, air |
|--------------------------|---|--------------|------|------|-----------------------------|-----|-----|--------------------|-----|-----|--------|---------|----------|----------|---------------------|------|-------------------------------------|
| mm                       |   |              | l/s  | m³/h | dB(A)                       | 6   | 8   | 10                 | 12  | 6   | 7      | 8       | 9        | 10       | 11                  | 12   | k <sub>pl</sub>                     |
| 775                      | L | L            | 14.7 | 53   | 24                          | 106 | 141 | 176                | 212 | 307 | 358    | 409     | 460      | 511      | 563                 | 614  | 1.2                                 |
| 775                      | М | Μ            | 18.9 | 68   | 30                          | 136 | 181 | 226                | 272 | 334 | 388    | 441     | 495      | 548      | 601                 | 654  | 1.54                                |
| 775                      | Н | Н            | 33.1 | 119  | 35                          | 238 | 317 | 397                | 476 | 377 | 442    | 507     | 573      | 639      | 705                 | 772  | 2.7                                 |
| 900                      | L | L            | 17.6 | 63   | 25                          | 127 | 169 | 212                | 254 | 369 | 430    | 492     | 553      | 614      | 676                 | 737  | 1.44                                |
| 900                      | М | Μ            | 22.7 | 82   | 31                          | 163 | 218 | 272                | 326 | 401 | 466    | 530     | 594      | 658      | 722                 | 785  | 1.85                                |
| 900                      | Н | Н            | 39.7 | 143  | 36                          | 286 | 381 | 476                | 571 | 453 | 531    | 609     | 688      | 768      | 847                 | 927  | 3.24                                |
| 1100                     | L | L            | 22.8 | 82   | 26                          | 164 | 219 | 273                | 328 | 481 | 561    | 641     | 721      | 801      | 881                 | 961  | 1.86                                |
| 1100                     | М | М            | 29.3 | 105  | 32                          | 211 | 281 | 351                | 422 | 523 | 607    | 691     | 775      | 858      | 941                 | 1024 | 2.39                                |
| 1100                     | Н | Н            | 51.3 | 185  | 37                          | 369 | 493 | 616                | 739 | 590 | 692    | 795     | 898      | 1001     | 1105                | 1209 | 4.19                                |
| 1300                     | L | L            | 27.2 | 98   | 27                          | 196 | 261 | 326                | 392 | 593 | 692    | 791     | 890      | 988      | 1087                | 1186 | 2.22                                |
| 1300                     | М | Μ            | 34.9 | 126  | 33                          | 251 | 335 | 419                | 503 | 645 | 749    | 853     | 956      | 1059     | 1161                | 1263 | 2.85                                |
| 1300                     | Н | Н            | 61.2 | 220  | 38                          | 441 | 588 | 735                | 882 | 728 | 854    | 981     | 1107     | 1235     | 1363                | 1491 | 5                                   |
| 1500                     | L | L            | 24.1 | 87   | 23                          | 174 | 232 | 290                | 347 | 581 | 676    | 772     | 867      | 963      | 1058                | 1153 | 1.97                                |
| 1500                     | М | М            | 42.0 | 151  | 32                          | 302 | 403 | 504                | 605 | 697 | 811    | 924     | 1038     | 1151     | 1264                | 1377 | 3.43                                |
| 1500                     | Н | Н            | 66.9 | 241  | 38                          | 481 | 642 | 802                | 963 | 789 | 918    | 1048    | 1177     | 1306     | 1435                | 1563 | 5.46                                |

1) The specified sound level is applicable to connection without damper or with fully open damper. In other cases where the air flow is demand-controlled with motor-driven dampers, the required data can be read from Swegon's ProSelect sizing program. Room attenuation = 4 dB

2) The specified capacities are based on a complete unit including standard distribution and recirculation grille. Without grille the water capacity increases by approx. 5%. With ADC adjusted to Fan shape you lose approx. 5% in water capacity. The primary air capacity is not affected.

NOTE! The total cooling capacity is the sum of the airborne and waterborne cooling capacities.



#### Table 5 – Cooling capacity, NC, 200 Pa

| Length<br>of the<br>unit |   | zzle<br>ting | Air  | flow | Sound<br>level <sup>1</sup> |     |     | apacity<br>r (W) ∠ |      |     | Coolin | 2    | Pressure<br>drop con-<br>stant, air |      |      |      |                 |
|--------------------------|---|--------------|------|------|-----------------------------|-----|-----|--------------------|------|-----|--------|------|-------------------------------------|------|------|------|-----------------|
| mm                       |   |              | l/s  | m³/h | dB(A)                       | 6   | 8   | 10                 | 12   | 6   | 7      | 8    | 9                                   | 10   | 11   | 12   | k <sub>pl</sub> |
| 775                      | L | L            | 17.0 | 61   | 28                          | 122 | 163 | 204                | 244  | 341 | 397    | 454  | 510                                 | 567  | 623  | 679  | 1.2             |
| 775                      | М | Μ            | 21.8 | 78   | 34                          | 157 | 209 | 261                | 314  | 368 | 427    | 486  | 545                                 | 604  | 662  | 720  | 1.54            |
| 775                      | Н | Н            | 38.2 | 137  | 40                          | 275 | 367 | 458                | 550  | 412 | 483    | 554  | 625                                 | 697  | 769  | 841  | 2.7             |
| 900                      | L | L            | 20.4 | 73   | 29                          | 147 | 196 | 244                | 293  | 410 | 477    | 545  | 613                                 | 681  | 748  | 816  | 1.44            |
| 900                      | М | Μ            | 26.2 | 94   | 35                          | 188 | 251 | 314                | 377  | 442 | 513    | 584  | 655                                 | 725  | 795  | 865  | 1.85            |
| 900                      | Н | Н            | 45.8 | 165  | 40                          | 330 | 440 | 550                | 660  | 495 | 580    | 665  | 751                                 | 837  | 924  | 1011 | 3.24            |
| 1100                     | L | L            | 26.3 | 95   | 30                          | 189 | 253 | 316                | 379  | 534 | 623    | 711  | 800                                 | 888  | 976  | 1064 | 1.86            |
| 1100                     | М | М            | 33.8 | 122  | 36                          | 243 | 324 | 406                | 487  | 576 | 669    | 762  | 854                                 | 946  | 1037 | 1129 | 2.39            |
| 1100                     | Н | Н            | 59.3 | 213  | 42                          | 427 | 569 | 711                | 853  | 645 | 756    | 868  | 980                                 | 1092 | 1205 | 1318 | 4.19            |
| 1300                     | L | L            | 31.4 | 113  | 31                          | 226 | 301 | 377                | 452  | 659 | 768    | 877  | 986                                 | 1095 | 1204 | 1313 | 2.22            |
| 1300                     | М | М            | 40.3 | 145  | 37                          | 290 | 387 | 484                | 580  | 711 | 825    | 940  | 1053                                | 1167 | 1280 | 1392 | 2.85            |
| 1300                     | Н | Н            | 70.7 | 255  | 43                          | 509 | 679 | 849                | 1018 | 796 | 933    | 1070 | 1209                                | 1347 | 1486 | 1626 | 5               |
| 1500                     | L | L            | 27.9 | 100  | 27                          | 201 | 267 | 334                | 401  | 642 | 749    | 856  | 963                                 | 1070 | 1177 | 1285 | 1.97            |
| 1500                     | М | Μ            | 48.5 | 175  | 37                          | 349 | 466 | 582                | 699  | 762 | 886    | 1011 | 1135                                | 1259 | 1383 | 1507 | 3.43            |
| 1500                     | Н | Н            | 77.2 | 278  | 42                          | 556 | 741 | 927                | 1112 | 854 | 995    | 1136 | 1276                                | 1417 | 1557 | 1697 | 5.46            |

#### Table 6 – Cooling capacity, HC, 100 Pa

|                          |   | ozzle Air flow Sound Cooling capacity, pri- Cooling capacity, water (W) at $\Delta T_{mk}^{2}$ |      |      |                             |     |     |                    |     |     |        |      |                                     |      |      |      |                 |
|--------------------------|---|------------------------------------------------------------------------------------------------|------|------|-----------------------------|-----|-----|--------------------|-----|-----|--------|------|-------------------------------------|------|------|------|-----------------|
| Length<br>of the<br>unit |   | zzle<br>ting                                                                                   | Air  | flow | Sound<br>level <sup>1</sup> |     |     | pacity,<br>· (W) ∆ |     |     | Coolir | 2    | Pressure<br>drop con-<br>stant, air |      |      |      |                 |
| mm                       |   |                                                                                                | l/s  | m³/h | dB(A)                       | 6   | 8   | 10                 | 12  | 6   | 7      | 8    | 9                                   | 10   | 11   | 12   | k <sub>pl</sub> |
| 775                      | L | L                                                                                              | 12   | 43   | <20                         | 86  | 115 | 144                | 173 | 278 | 324    | 369  | 414                                 | 459  | 503  | 548  | 1.2             |
| 775                      | М | М                                                                                              | 15.4 | 55   | 24                          | 111 | 148 | 185                | 222 | 312 | 362    | 411  | 461                                 | 510  | 559  | 607  | 1.54            |
| 775                      | Н | Н                                                                                              | 27   | 97   | 29                          | 194 | 259 | 324                | 389 | 376 | 438    | 499  | 560                                 | 621  | 682  | 742  | 2.7             |
| 900                      | L | L                                                                                              | 14.4 | 52   | <20                         | 104 | 138 | 173                | 207 | 334 | 389    | 443  | 497                                 | 551  | 605  | 658  | 1.44            |
| 900                      | М | М                                                                                              | 18.5 | 67   | 25                          | 133 | 178 | 222                | 266 | 374 | 434    | 494  | 553                                 | 612  | 671  | 730  | 1.85            |
| 900                      | Н | Н                                                                                              | 32.4 | 117  | 30                          | 233 | 311 | 389                | 467 | 452 | 526    | 599  | 673                                 | 746  | 819  | 892  | 3.24            |
| 1100                     | L | L                                                                                              | 18.6 | 67   | 20                          | 134 | 179 | 223                | 268 | 436 | 507    | 578  | 648                                 | 718  | 789  | 859  | 1.86            |
| 1100                     | М | М                                                                                              | 23.9 | 86   | 26                          | 172 | 229 | 287                | 344 | 488 | 566    | 644  | 721                                 | 799  | 875  | 952  | 2.39            |
| 1100                     | Н | Н                                                                                              | 41.9 | 151  | 31                          | 302 | 402 | 503                | 603 | 590 | 686    | 782  | 877                                 | 973  | 1068 | 1163 | 4.19            |
| 1300                     | L | L                                                                                              | 22.2 | 80   | 21                          | 160 | 213 | 266                | 320 | 538 | 625    | 713  | 799                                 | 886  | 973  | 1059 | 2.22            |
| 1300                     | М | М                                                                                              | 28.5 | 103  | 27                          | 205 | 274 | 342                | 410 | 602 | 699    | 794  | 890                                 | 985  | 1079 | 1174 | 2.85            |
| 1300                     | Н | Н                                                                                              | 50   | 180  | 32                          | 360 | 480 | 600                | 720 | 727 | 846    | 964  | 1082                                | 1200 | 1317 | 1434 | 5               |
| 1500                     | L | L                                                                                              | 19.7 | 71   | <20                         | 142 | 189 | 236                | 284 | 545 | 633    | 721  | 808                                 | 895  | 982  | 1069 | 1.97            |
| 1500                     | М | М                                                                                              | 34.3 | 123  | 26                          | 247 | 329 | 412                | 494 | 700 | 814    | 927  | 1040                                | 1153 | 1265 | 1377 | 3.43            |
| 1500                     | Н | Н                                                                                              | 54.6 | 197  | 32                          | 393 | 524 | 655                | 786 | 811 | 944    | 1076 | 1209                                | 1341 | 1473 | 1605 | 5.46            |

1) The specified sound level is applicable to connection without damper or with fully open damper. In other cases where the air flow is demand-controlled with motor-driven dampers, the required data can be read from Swegon's ProSelect sizing program. Room attenuation = 4 dB

2) The specified capacities are based on a complete unit including standard distribution and recirculation grille. Without grille the water capacity increases by approx. 5%. With ADC adjusted to Fan shape you lose approx. 5% in water capacity. The primary air capacity is not affected.

NOTE! The total cooling capacity is the sum of the airborne and waterborne cooling capacities.



#### Table 7 – Cooling capacity, HC, 150 Pa

| Length<br>of the<br>unit |   | zzle<br>ing | Air f | low | Sound<br>level <sup>1</sup> |     |     | apacity,<br>r (W) ∆ |     |     | Coolin | ig capao | city, wat | er (W) a        | at $\Delta T_{mk}^{2}$ |      | Pressure<br>drop con-<br>stant, air |
|--------------------------|---|-------------|-------|-----|-----------------------------|-----|-----|---------------------|-----|-----|--------|----------|-----------|-----------------|------------------------|------|-------------------------------------|
| mm                       |   |             |       |     |                             |     |     |                     |     |     |        |          | 12        | k <sub>pl</sub> |                        |      |                                     |
| 775                      | L | L           | 14.7  | 53  | 24                          | 106 | 141 | 176                 | 212 | 331 | 385    | 439      | 492       | 546             | 599                    | 653  | 1.2                                 |
| 775                      | Μ | М           | 18.9  | 68  | 30                          | 136 | 181 | 226                 | 272 | 366 | 425    | 484      | 542       | 601             | 659                    | 717  | 1.54                                |
| 775                      | Н | Н           | 33.1  | 119 | 35                          | 238 | 317 | 397                 | 476 | 434 | 506    | 577      | 648       | 719             | 790                    | 861  | 2.7                                 |
| 900                      | L | L           | 17.6  | 63  | 25                          | 127 | 169 | 212                 | 254 | 397 | 462    | 527      | 591       | 656             | 720                    | 784  | 1.44                                |
| 900                      | М | М           | 22.7  | 82  | 31                          | 163 | 218 | 272                 | 326 | 440 | 511    | 581      | 651       | 721             | 791                    | 861  | 1.85                                |
| 900                      | Н | Н           | 39.7  | 143 | 36                          | 286 | 381 | 476                 | 571 | 522 | 608    | 693      | 778       | 864             | 949                    | 1034 | 3.24                                |
| 1100                     | L | L           | 22.8  | 82  | 26                          | 164 | 219 | 273                 | 328 | 518 | 603    | 687      | 771       | 855             | 939                    | 1023 | 1.86                                |
| 1100                     | М | М           | 29.3  | 105 | 32                          | 211 | 281 | 351                 | 422 | 574 | 666    | 758      | 850       | 941             | 1032                   | 1123 | 2.39                                |
| 1100                     | Н | Н           | 51.3  | 185 | 37                          | 369 | 493 | 616                 | 739 | 681 | 793    | 904      | 1015      | 1127            | 1238                   | 1348 | 4.19                                |
| 1300                     | L | L           | 27.2  | 98  | 27                          | 196 | 261 | 326                 | 392 | 639 | 744    | 847      | 951       | 1055            | 1158                   | 1261 | 2.22                                |
| 1300                     | М | М           | 34.9  | 126 | 33                          | 251 | 335 | 419                 | 503 | 708 | 822    | 935      | 1048      | 1161            | 1273                   | 1385 | 2.85                                |
| 1300                     | Н | Н           | 61.2  | 220 | 38                          | 441 | 588 | 735                 | 882 | 840 | 977    | 1115     | 1252      | 1389            | 1526                   | 1663 | 5                                   |
| 1500                     | L | L           | 24.1  | 87  | 23                          | 174 | 232 | 290                 | 347 | 653 | 759    | 865      | 971       | 1076            | 1181                   | 1286 | 1.97                                |
| 1500                     | М | М           | 42.0  | 151 | 32                          | 302 | 403 | 504                 | 605 | 821 | 954    | 1087     | 1219      | 1351            | 1482                   | 1613 | 3.43                                |
| 1500                     | Н | Н           | 66.9  | 241 | 38                          | 481 | 642 | 802                 | 963 | 935 | 1090   | 1244     | 1399      | 1553            | 1707                   | 1861 | 5.46                                |

#### Table 8 – Cooling capacity, HC, 200 Pa

|                          | h Nozzle Air flow Sound Cooling capacity, pri- Cooling capacity, water (W) at $\Delta T_{mk}^2$ Pressure |              |      |      |                             |     |     |                    |      |      |      |                                     |      |      |      |      |                 |
|--------------------------|----------------------------------------------------------------------------------------------------------|--------------|------|------|-----------------------------|-----|-----|--------------------|------|------|------|-------------------------------------|------|------|------|------|-----------------|
| Length<br>of the<br>unit |                                                                                                          | zzle<br>ting | Air  | flow | Sound<br>level <sup>1</sup> |     |     | apacity<br>r (W) 2 |      |      |      | Pressure<br>drop con-<br>stant, air |      |      |      |      |                 |
| mm                       |                                                                                                          |              | l/s  | m³/h | dB(A)                       | 6   | 8   | 10                 | 12   | 6    | 7    | 8                                   | 9    | 10   | 11   | 12   | k <sub>pl</sub> |
| 775                      | L                                                                                                        | L            | 17.0 | 61   | 28                          | 122 | 163 | 204                | 244  | 368  | 428  | 488                                 | 548  | 608  | 667  | 727  | 1.2             |
| 775                      | М                                                                                                        | М            | 21.8 | 78   | 34                          | 157 | 209 | 261                | 314  | 405  | 470  | 536                                 | 601  | 665  | 730  | 794  | 1.54            |
| 775                      | Н                                                                                                        | Н            | 38.2 | 137  | 40                          | 275 | 367 | 458                | 550  | 476  | 554  | 632                                 | 711  | 789  | 867  | 945  | 2.7             |
| 900                      | Γ                                                                                                        | L            | 20.4 | 73   | 29                          | 147 | 196 | 244                | 293  | 442  | 514  | 586                                 | 658  | 730  | 802  | 873  | 1.44            |
| 900                      | М                                                                                                        | М            | 26.2 | 94   | 35                          | 188 | 251 | 314                | 377  | 486  | 565  | 643                                 | 721  | 799  | 877  | 954  | 1.85            |
| 900                      | Н                                                                                                        | Н            | 45.8 | 165  | 40                          | 330 | 440 | 550                | 660  | 571  | 666  | 760                                 | 853  | 947  | 1041 | 1135 | 3.24            |
| 1100                     | L                                                                                                        | L            | 26.3 | 95   | 30                          | 189 | 253 | 316                | 379  | 577  | 671  | 765                                 | 859  | 952  | 1046 | 1139 | 1.86            |
| 1100                     | М                                                                                                        | М            | 33.8 | 122  | 36                          | 243 | 324 | 406                | 487  | 634  | 737  | 839                                 | 941  | 1042 | 1144 | 1244 | 2.39            |
| 1100                     | Н                                                                                                        | Н            | 59.3 | 213  | 42                          | 427 | 569 | 711                | 853  | 745  | 868  | 991                                 | 1113 | 1236 | 1358 | 1480 | 4.19            |
| 1300                     | L                                                                                                        | L            | 31.4 | 113  | 31                          | 226 | 301 | 377                | 452  | 711  | 827  | 943                                 | 1059 | 1174 | 1290 | 1405 | 2.22            |
| 1300                     | М                                                                                                        | М            | 40.3 | 145  | 37                          | 290 | 387 | 484                | 580  | 782  | 909  | 1035                                | 1160 | 1286 | 1410 | 1535 | 2.85            |
| 1300                     | Н                                                                                                        | Н            | 70.7 | 255  | 43                          | 509 | 679 | 849                | 1018 | 919  | 1071 | 1222                                | 1373 | 1524 | 1675 | 1825 | 5               |
| 1500                     | L                                                                                                        | L            | 27.9 | 100  | 27                          | 201 | 267 | 334                | 401  | 730  | 849  | 968                                 | 1086 | 1205 | 1323 | 1441 | 1.97            |
| 1500                     | М                                                                                                        | М            | 48.5 | 175  | 37                          | 349 | 466 | 582                | 699  | 907  | 1054 | 1200                                | 1346 | 1491 | 1636 | 1781 | 3.43            |
| 1500                     | Н                                                                                                        | Н            | 77.2 | 278  | 42                          | 556 | 741 | 927                | 1112 | 1024 | 1194 | 1364                                | 1533 | 1703 | 1873 | 2042 | 5.46            |

1) The specified sound level is applicable to connection without damper or with fully open damper. In other cases where the air flow is demand-controlled with motor-driven dampers, the required data can be read from Swegon's ProSelect sizing program. Room attenuation = 4 dB

2) The specified capacities are based on a complete unit including standard distribution and recirculation grille. Without grille the water capacity increases by approx. 5%. With ADC adjusted to Fan shape you lose approx. 5% in water capacity. The primary air capacity is not affected.

NOTE! The total cooling capacity is the sum of the airborne and waterborne cooling capacities.

14



# Heating

#### **Heating capacity**

Heating capacity achieved from the water circuit for various lengths of unit and airflows are tabulated in Table 11-16.

#### **Pressure drop**

The pressure drop on the water side can be calculated using the formula:

#### $\Delta p = (q / k_{pv})^2$ where

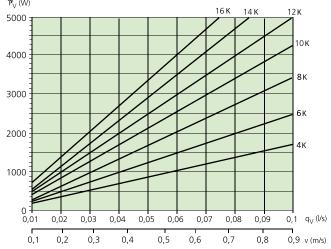
 $\Delta p$  = Pressure drop in the water circuit (kPa)

q = Water flow (I/s), see Diagram 3

 $k_{pv}$  = Pressure drop constant read from table 9.

For a more detailed pressure drop calculation, use the Swegon's ProSelect software, which is available on www.swegon.com.

#### Table 9 Pressure drop, water


|        | NC                      | HC | НС ССО                  |
|--------|-------------------------|----|-------------------------|
| Length | k <sub>pv</sub> Heating |    | k <sub>pv</sub> Heating |
| 775    | 0.0385                  |    | 0.0189                  |
| 900    | 0.0372                  |    | 0.0181                  |
| 1100   | 0.0348                  |    | 0.0171                  |
| 1300   | 0.0329                  |    | 0.0163                  |
| 1500   | 0.0311                  |    | 0.0156                  |

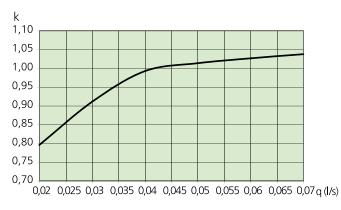
NC - Normal design

HC CCO - High Capacity design with CCO valve

#### **Diagram 3 - Heating capacity**

The function between the heating capacity  $P_v$  (W), the change in temperature  $\Delta T_v$  (K) and the heating water flow  $q_{\mu_c}$  (I/s).




#### Table 10 - Heating capacity for natural convection

|        |    | Heat output at $\Delta T_{mv}$ [K ] (W) |     |     |     |     |     |  |  |  |  |
|--------|----|-----------------------------------------|-----|-----|-----|-----|-----|--|--|--|--|
| Length | 5  | 10                                      | 15  | 20  | 25  | 30  | 35  |  |  |  |  |
| 775    | 19 | 44                                      | 73  | 104 | 137 | 172 | 208 |  |  |  |  |
| 900    | 22 | 53                                      | 87  | 125 | 165 | 207 | 250 |  |  |  |  |
| 1100   | 23 | 56                                      | 96  | 140 | 188 | 240 | 294 |  |  |  |  |
| 1300   | 23 | 60                                      | 105 | 156 | 212 | 273 | 338 |  |  |  |  |
| 1500   | 23 | 63                                      | 113 | 171 | 236 | 307 | 383 |  |  |  |  |

#### **Capacity correction**

Different water flow rates to some extent have an effect on the heating capacity output. In order to calculate the actual heating capacity based on a flow-dependant correction factor, use Swegon's ProSelect software, which is available from www.swegon.com.

#### Diagram 4. Water flow – capacity correction





| Length of<br>the unit | Nozzl<br>tir | e set-<br>ng | Air  | flow | Sound<br>level 1 |     | Heating capacity, water (W) at $\Delta T_{_{mv}}$ |     |      |      |      |      | Pressure drop<br>constant, air |
|-----------------------|--------------|--------------|------|------|------------------|-----|---------------------------------------------------|-----|------|------|------|------|--------------------------------|
| mm                    |              |              | l/s  | m³/h | dB(A)            | 5   | 10                                                | 15  | 20   | 25   | 30   | 35   | k <sub>pl</sub>                |
| 775                   | L            | L            | 12   | 43   | <20              | 116 | 236                                               | 359 | 484  | 609  | 735  | 862  | 1.2                            |
| 775                   | М            | М            | 15.4 | 55   | 24               | 127 | 259                                               | 393 | 529  | 665  | 802  | 940  | 1.54                           |
| 775                   | Н            | Н            | 27   | 97   | 29               | 149 | 305                                               | 463 | 623  | 784  | 947  | 1110 | 2.7                            |
| 900                   | L            | L            | 14.4 | 52   | <20              | 139 | 284                                               | 432 | 581  | 731  | 883  | 1035 | 1.44                           |
| 900                   | М            | М            | 18.5 | 67   | 25               | 153 | 311                                               | 472 | 635  | 799  | 963  | 1129 | 1.85                           |
| 900                   | Н            | Н            | 32.4 | 117  | 30               | 179 | 366                                               | 556 | 748  | 942  | 1137 | 1333 | 3.24                           |
| 1100                  | L            | L            | 18.6 | 67   | 20               | 181 | 370                                               | 563 | 758  | 954  | 1152 | 1350 | 1.86                           |
| 1100                  | М            | М            | 23.9 | 86   | 26               | 199 | 406                                               | 616 | 828  | 1042 | 1257 | 1473 | 2.39                           |
| 1100                  | Н            | Н            | 41.9 | 151  | 31               | 233 | 477                                               | 725 | 976  | 1229 | 1483 | 1739 | 4.19                           |
| 1300                  | L            | L            | 22.2 | 80   | 21               | 223 | 457                                               | 694 | 935  | 1177 | 1420 | 1666 | 2.22                           |
| 1300                  | М            | М            | 28.5 | 103  | 27               | 246 | 501                                               | 760 | 1022 | 1285 | 1550 | 1816 | 2.85                           |
| 1300                  | Н            | Н            | 50   | 180  | 32               | 288 | 589                                               | 894 | 1204 | 1515 | 1829 | 2145 | 5                              |
| 1500                  | L            | L            | 19.7 | 71   | <20              | 235 | 479                                               | 727 | 977  | 1229 | 1482 | 1737 | 1.97                           |
| 1500                  | М            | М            | 34.3 | 123  | 26               | 277 | 568                                               | 864 | 1164 | 1466 | 1771 | 2077 | 3.43                           |
| 1500                  | Н            | Н            | 54.6 | 197  | 32               | 309 | 633                                               | 964 | 1298 | 1636 | 1976 | 2318 | 5.46                           |

#### Table 11 – Heating capacity, NC, 100 Pa

#### Table 12 – Heating capacity, NC, 150 Pa

| Length of the unit | 1 | e set- | Air f | low  | Sound<br>level 1 |     | Heating capacity, water (W) at $\Delta T_{_{mv}}$ |      |      |      |      |      | Pressure drop<br>constant, air |
|--------------------|---|--------|-------|------|------------------|-----|---------------------------------------------------|------|------|------|------|------|--------------------------------|
| mm                 |   |        | l/s   | m³/h | dB(A)            | 5   | 10                                                | 15   | 20   | 25   | 30   | 35   | k <sub>pl</sub>                |
| 775                | L | L      | 14.7  | 53   | 24               | 131 | 268                                               | 407  | 548  | 690  | 833  | 977  | 1.2                            |
| 775                | М | М      | 18.9  | 68   | 30               | 144 | 293                                               | 443  | 594  | 745  | 898  | 1050 | 1.54                           |
| 775                | Н | Н      | 33.1  | 119  | 35               | 163 | 334                                               | 509  | 686  | 864  | 1044 | 1225 | 2.7                            |
| 900                | L | L      | 17.6  | 63   | 25               | 157 | 322                                               | 489  | 658  | 829  | 1000 | 1173 | 1.44                           |
| 900                | М | М      | 22.7  | 82   | 31               | 173 | 352                                               | 532  | 713  | 895  | 1078 | 1262 | 1.85                           |
| 900                | Н | Н      | 39.7  | 143  | 36               | 195 | 401                                               | 611  | 824  | 1038 | 1254 | 1472 | 3.24                           |
| 1100               | L | L      | 22.8  | 82   | 26               | 205 | 419                                               | 638  | 858  | 1081 | 1305 | 1530 | 1.86                           |
| 1100               | М | М      | 29.3  | 105  | 32               | 226 | 459                                               | 694  | 930  | 1168 | 1406 | 1646 | 2.39                           |
| 1100               | Н | Н      | 51.3  | 185  | 37               | 255 | 523                                               | 797  | 1074 | 1354 | 1636 | 1920 | 4.19                           |
| 1300               | L | L      | 27.2  | 98   | 27               | 253 | 517                                               | 787  | 1059 | 1333 | 1609 | 1887 | 2.22                           |
| 1300               | М | М      | 34.9  | 126  | 33               | 279 | 566                                               | 855  | 1147 | 1440 | 1735 | 2030 | 2.85                           |
| 1300               | Н | Н      | 61.2  | 220  | 38               | 314 | 645                                               | 983  | 1325 | 1670 | 2018 | 2368 | 5                              |
| 1500               | L | L      | 24.1  | 87   | 23               | 267 | 544                                               | 824  | 1107 | 1392 | 1679 | 1967 | 1.97                           |
| 1500               | М | М      | 42.0  | 151  | 32               | 310 | 634                                               | 965  | 1300 | 1638 | 1978 | 2320 | 3.43                           |
| 1500               | Н | Н      | 66.9  | 241  | 38               | 340 | 698                                               | 1064 | 1434 | 1807 | 2184 | 2562 | 5.46                           |

1) The specified sound level is applicable to connection without damper or with fully open damper. In other cases where the air flow is demand-controlled with motor-driven dampers, the required data can be read from Swegon's ProSelect sizing program. Room attenuation = 4 dB

16



| Length of the unit | Nozzl<br>tir |   | Air  | flow | Sound<br>level <sup>1</sup> | 5 1 <i>5</i> , <i>x</i> , mv |     |      |      |      | Pressure drop<br>constant, air |      |                 |
|--------------------|--------------|---|------|------|-----------------------------|------------------------------|-----|------|------|------|--------------------------------|------|-----------------|
| mm                 |              |   | l/s  | m³/h | dB(A)                       | 5                            | 10  | 15   | 20   | 25   | 30                             | 35   | k <sub>pl</sub> |
| 775                | L            | L | 17.0 | 61   | 28                          | 142                          | 290 | 441  | 593  | 747  | 902                            | 1058 | 1.2             |
| 775                | М            | М | 21.8 | 78   | 34                          | 157                          | 317 | 478  | 640  | 802  | 965                            | 1129 | 1.54            |
| 775                | Н            | Н | 38.2 | 137  | 40                          | 172                          | 355 | 541  | 730  | 921  | 1114                           | 1308 | 2.7             |
| 900                | L            | L | 20.4 | 73   | 29                          | 170                          | 348 | 530  | 713  | 898  | 1084                           | 1271 | 1.44            |
| 900                | М            | М | 26.2 | 94   | 35                          | 188                          | 380 | 574  | 768  | 964  | 1160                           | 1356 | 1.85            |
| 900                | Н            | Н | 45.8 | 165  | 40                          | 207                          | 426 | 650  | 877  | 1106 | 1338                           | 1570 | 3.24            |
| 1100               | L            | L | 26.3 | 95   | 30                          | 222                          | 454 | 691  | 930  | 1171 | 1414                           | 1658 | 1.86            |
| 1100               | М            | М | 33.8 | 122  | 36                          | 245                          | 496 | 749  | 1002 | 1257 | 1513                           | 1769 | 2.39            |
| 1100               | Н            | Н | 59.3 | 213  | 42                          | 270                          | 556 | 848  | 1144 | 1443 | 1745                           | 2049 | 4.19            |
| 1300               | L            | L | 31.4 | 113  | 31                          | 274                          | 560 | 852  | 1147 | 1444 | 1744                           | 2045 | 2.22            |
| 1300               | М            | М | 40.3 | 145  | 37                          | 303                          | 612 | 923  | 1236 | 1550 | 1866                           | 2182 | 2.85            |
| 1300               | Н            | Н | 70.7 | 255  | 43                          | 333                          | 686 | 1046 | 1411 | 1780 | 2152                           | 2527 | 5               |
| 1500               | L            | L | 27.9 | 100  | 27                          | 289                          | 589 | 893  | 1200 | 1508 | 1819                           | 2130 | 1.97            |
| 1500               | М            | М | 48.5 | 175  | 37                          | 333                          | 682 | 1037 | 1397 | 1760 | 2125                           | 2493 | 3.43            |
| 1500               | Н            | Н | 77.2 | 278  | 42                          | 362                          | 744 | 1134 | 1530 | 1929 | 2331                           | 2736 | 5.46            |

#### Table 13 – Heating capacity, NC, 200 Pa

#### Table 14 – Heating capacity, HC, 100 Pa

| Length of<br>the unit | Nozzl<br>tir |   | Air flow Sound level <sup>1</sup> |      |       |     | Heati |      | Pressure drop<br>constant, air |      |      |      |                 |
|-----------------------|--------------|---|-----------------------------------|------|-------|-----|-------|------|--------------------------------|------|------|------|-----------------|
| mm                    |              |   | l/s                               | m³/h | dB(A) | 5   | 10    | 15   | 20                             | 25   | 30   | 35   | k <sub>pl</sub> |
| 775                   | L            | L | 12                                | 43   | <20   | 217 | 439   | 661  | 884                            | 1109 | 1333 | 1558 | 1.2             |
| 775                   | М            | Μ | 15.4                              | 55   | 24    | 241 | 489   | 738  | 990                            | 1242 | 1496 | 1750 | 1.54            |
| 775                   | Н            | Н | 27                                | 97   | 29    | 291 | 591   | 895  | 1201                           | 1509 | 1819 | 2130 | 2.7             |
| 900                   | L            | L | 14.4                              | 52   | <20   | 261 | 527   | 794  | 1062                           | 1331 | 1601 | 1872 | 1.44            |
| 900                   | М            | Μ | 18.5                              | 67   | 25    | 290 | 587   | 887  | 1189                           | 1492 | 1797 | 2102 | 1.85            |
| 900                   | Н            | Н | 32.4                              | 117  | 30    | 349 | 710   | 1075 | 1443                           | 1813 | 2185 | 2559 | 3.24            |
| 1100                  | L            | L | 18.6                              | 67   | 20    | 341 | 687   | 1036 | 1386                           | 1737 | 2089 | 2441 | 1.86            |
| 1100                  | М            | М | 23.9                              | 86   | 26    | 378 | 765   | 1157 | 1551                           | 1947 | 2344 | 2742 | 2.39            |
| 1100                  | Н            | Н | 41.9                              | 151  | 31    | 455 | 926   | 1402 | 1882                           | 2365 | 2850 | 3337 | 4.19            |
| 1300                  | L            | L | 22.2                              | 80   | 21    | 420 | 847   | 1277 | 1709                           | 2142 | 2576 | 3011 | 2.22            |
| 1300                  | М            | М | 28.5                              | 103  | 27    | 466 | 944   | 1427 | 1913                           | 2401 | 2891 | 3382 | 2.85            |
| 1300                  | Н            | Н | 50                                | 180  | 32    | 562 | 1142  | 1729 | 2321                           | 2917 | 3515 | 4116 | 5               |
| 1500                  | L            | L | 19.7                              | 71   | <20   | 440 | 905   | 1379 | 1860                           | 2345 | 2835 | 3327 | 1.97            |
| 1500                  | М            | Μ | 34.3                              | 123  | 26    | 560 | 1130  | 1704 | 2281                           | 2860 | 3440 | 4022 | 3.43            |
| 1500                  | Н            | Н | 54.6                              | 197  | 32    | 632 | 1281  | 1937 | 2597                           | 3261 | 3927 | 4596 | 5.46            |

1) The specified sound level is applicable to connection without damper or with fully open damper. In other cases where the air flow is demand-controlled with motor-driven dampers, the required data can be read from Swegon's ProSelect sizing program. Room attenuation = 4 dB



| Length of<br>the unit |   | le set-<br>ng | Air f | low  | Sound<br>level <sup>1</sup> |     | Heati | ng capa | city, wat | er (W) a | t ∆T <sub>mv</sub> |      | Pressure drop constant, air |
|-----------------------|---|---------------|-------|------|-----------------------------|-----|-------|---------|-----------|----------|--------------------|------|-----------------------------|
| mm                    |   |               | l/s   | m³/h | dB(A)                       | 5   | 10    | 15      | 20        | 25       | 30                 | 35   | k <sub>pl</sub>             |
| 775                   | L | L             | 14.7  | 53   | 24                          | 261 | 525   | 790     | 1057      | 1324     | 1592               | 1860 | 1.2                         |
| 775                   | Μ | М             | 18.9  | 68   | 30                          | 285 | 578   | 875     | 1174      | 1475     | 1777               | 2081 | 1.54                        |
| 775                   | Н | н             | 33.1  | 119  | 35                          | 338 | 686   | 1038    | 1392      | 1749     | 2106               | 2465 | 2.7                         |
| 900                   | L | L             | 17.6  | 63   | 25                          | 313 | 630   | 949     | 1269      | 1590     | 1912               | 2234 | 1.44                        |
| 900                   | М | М             | 22.7  | 82   | 31                          | 342 | 695   | 1051    | 1411      | 1772     | 2135               | 2499 | 1.85                        |
| 900                   | Н | Н             | 39.7  | 143  | 36                          | 406 | 824   | 1247    | 1672      | 2100     | 2530               | 2961 | 3.24                        |
| 1100                  | L | L             | 22.8  | 82   | 26                          | 408 | 822   | 1238    | 1656      | 2074     | 2494               | 2914 | 1.86                        |
| 1100                  | Μ | М             | 29.3  | 105  | 32                          | 446 | 906   | 1371    | 1840      | 2311     | 2785               | 3260 | 2.39                        |
| 1100                  | Н | Н             | 51.3  | 185  | 37                          | 530 | 1075  | 1626    | 2182      | 2739     | 3300               | 3862 | 4.19                        |
| 1300                  | L | L             | 27.2  | 98   | 27                          | 504 | 1014  | 1527    | 2042      | 2559     | 3076               | 3594 | 2.22                        |
| 1300                  | Μ | М             | 34.9  | 126  | 33                          | 550 | 1118  | 1691    | 2269      | 2851     | 3434               | 4020 | 2.85                        |
| 1300                  | Н | Н             | 61.2  | 220  | 38                          | 654 | 1326  | 2006    | 2691      | 3379     | 4070               | 4763 | 5                           |
| 1500                  | L | L             | 24.1  | 87   | 23                          | 517 | 1062  | 1618    | 2181      | 2750     | 3323               | 3899 | 1.97                        |
| 1500                  | Μ | М             | 42.0  | 151  | 32                          | 637 | 1295  | 1960    | 2631      | 3305     | 3982               | 4662 | 3.43                        |
| 1500                  | Н | Н             | 66.9  | 241  | 38                          | 711 | 1442  | 2180    | 2923      | 3671     | 4421               | 5173 | 5.46                        |

#### Table 15 – Heating capacity, HC, 150 Pa

#### Table 16 – Heating capacity, HC, 200 Pa

| Length of<br>the unit | Nozzl<br>tir |   | Air f | low  | Sound<br>level <sup>1</sup> |     | Heati | ng capa | city, wat | er (W) a | t ΔT <sub>mv</sub> |      | Pressure drop<br>constant, air |
|-----------------------|--------------|---|-------|------|-----------------------------|-----|-------|---------|-----------|----------|--------------------|------|--------------------------------|
| mm                    |              |   | l/s   | m³/h | dB(A)                       | 5   | 10    | 15      | 20        | 25       | 30                 | 35   | k <sub>pl</sub>                |
| 775                   | L            | L | 17.0  | 61   | 28                          | 291 | 586   | 882     | 1179      | 1477     | 1775               | 2074 | 1.2                            |
| 775                   | Μ            | М | 21.8  | 78   | 34                          | 316 | 642   | 972     | 1305      | 1640     | 1977               | 2315 | 1.54                           |
| 775                   | Н            | Н | 38.2  | 137  | 40                          | 372 | 754   | 1140    | 1528      | 1918     | 2310               | 2702 | 2.7                            |
| 900                   | L            | L | 20.4  | 73   | 29                          | 350 | 704   | 1060    | 1416      | 1774     | 2132               | 2491 | 1.44                           |
| 900                   | М            | М | 26.2  | 94   | 35                          | 379 | 771   | 1168    | 1568      | 1970     | 2375               | 2780 | 1.85                           |
| 900                   | Н            | Н | 45.8  | 165  | 40                          | 447 | 906   | 1369    | 1835      | 2304     | 2774               | 3246 | 3.24                           |
| 1100                  | L            | L | 26.3  | 95   | 30                          | 456 | 918   | 1382    | 1848      | 2314     | 2781               | 3249 | 1.86                           |
| 1100                  | М            | М | 33.8  | 122  | 36                          | 495 | 1006  | 1524    | 2045      | 2570     | 3097               | 3627 | 2.39                           |
| 1100                  | Н            | Н | 59.3  | 213  | 42                          | 583 | 1182  | 1786    | 2394      | 3005     | 3619               | 4234 | 4.19                           |
| 1300                  | L            | L | 31.4  | 113  | 31                          | 563 | 1132  | 1705    | 2279      | 2854     | 3430               | 4008 | 2.22                           |
| 1300                  | М            | М | 40.3  | 145  | 37                          | 610 | 1241  | 1879    | 2523      | 3170     | 3820               | 4473 | 2.85                           |
| 1300                  | Н            | Н | 70.7  | 255  | 43                          | 719 | 1457  | 2203    | 2953      | 3707     | 4463               | 5222 | 5                              |
| 1500                  | L            | L | 27.9  | 100  | 27                          | 572 | 1174  | 1787    | 2409      | 3037     | 3669               | 4305 | 1.97                           |
| 1500                  | Μ            | М | 48.5  | 175  | 37                          | 692 | 1412  | 2142    | 2878      | 3620     | 4366               | 5116 | 3.43                           |
| 1500                  | Н            | Н | 77.2  | 278  | 42                          | 767 | 1556  | 2352    | 3155      | 3961     | 4771               | 5583 | 5.46                           |

1) The specified sound level is applicable to connection without damper or with fully open damper. In other cases where the air flow is demand-controlled with motor-driven dampers, the required data can be read from Swegon's ProSelect sizing program. Room attenuation = 4 dB



# Acoustics

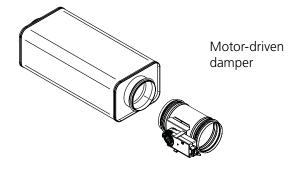
#### **Natural attenuation**

Natural attenuation is the total reduction in sound power from duct to room including the end reflection of the unit.

#### Table 17 – Natural attenuation with cladding

| Natural attenuation (dB) at mid frequency f (Hz) $\Delta L_w$ [dB ] |     |                         |   |   |    |    |    |  |  |
|---------------------------------------------------------------------|-----|-------------------------|---|---|----|----|----|--|--|
| 63                                                                  | 125 | 125 250 500 1k 2k 4k 8k |   |   |    |    |    |  |  |
| 24                                                                  | 14  | 9                       | 6 | 9 | 14 | 14 | 18 |  |  |




# Accessories

# Supply air kit – PARAGON T-SAK-VAV

A motor-driven damper is needed in applications where the user wants to demand-control the supply air by means of CONDUCTOR control equipment The damper causes a certain amount of flow-generated sound. Therefore a sound attenuator is also needed to guarantee a low sound level in the room. The following components are included in PARAGON T-SAK-VAV:

| Motor-driven<br>damper | CRTc including Swegon's motor                                                     |
|------------------------|-----------------------------------------------------------------------------------|
| Sound attenu-<br>ator  | CLA rectangular sound attenua-<br>tor with circular connection spigots<br>L=500mm |

Sound attenuator



Supply air kit – PARAGON T-SAK-CAV

A commissioning damper is needed to ensure the correct air flow if a simpler feed-back control system with constant air flow has been selected. Commissioning dampers also generate a certain amount of sound. We therefore recommend the use of a sound attenuator for keeping the sound level at a minimum. The following components are included in PARAGON T-SAK-CAV:

| Commissioning<br>damper | CRPc-9 Commissioning damper<br>with perforated damper blade and<br>manually adjustable blade |
|-------------------------|----------------------------------------------------------------------------------------------|
| Sound attenuator        | CLA rectangular sound attenuator<br>with circular connection spigots<br>L=500mm              |

Sound attenuator

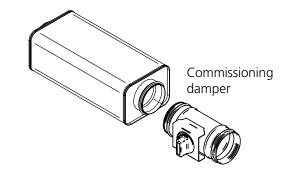



Figure 17. PARAGON T-SAK-CAV

Figure 16. PARAGON T-SAK-VAV



# Extract air kit – PARAGON T-EAK-VAV

If the supply air is demand-controlled, the extract air also needs to be feed-back controlled. An extract air kit is needed for balancing the supply air and the extract air. Precisely like the supply air kit, this kit consists of a motordriven damper and a sound attenuator. In addition an extract air register and two alternative mounting frames are included: one with a nipple and one with a joint.

| Motor-driven<br>damper  | CRTc including Swegon's motor                                                 |
|-------------------------|-------------------------------------------------------------------------------|
| Sound<br>attenuator     | CLA rectangular sound attenuator with circular connection spigots L=500mm     |
| Extract air<br>register | EXCa and accompanying mounting frames: one with a nipple and one with a joint |

# Extract air kit – PARAGON T-EAK-CAV

A commissioning damper is needed in systems with constant airflows in order to balance the extract air flow with the supply air flow.

Therefore a kit designed for constant airflows is available for simpler systems.Ø This kit contains commissioning damper, sound attenuator, extract air register and mounting frames.

| Commissioning<br>damper | CRPc-9 Commissioning damper with<br>perforated damper blade and manually<br>adjustable blade |
|-------------------------|----------------------------------------------------------------------------------------------|
| Sound<br>attenuator     | CLA rectangular sound attenuator with circular connection spigots L=500mm                    |
| Extract air<br>register | EXCa and accompanying mounting frames: One with a nipple and one with a joint                |

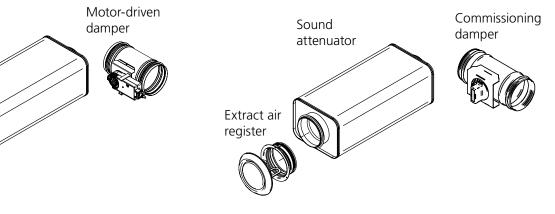



Figure 18. Extract air kit – PARAGON T-EAK-VAV

Sound

Extract air

register

attenuator

Figure 19. Extract air kit PARAGON T-EAK-CAV



21

### PARAGON Wall

#### Suspension kit SYST MS M8

In the applications in which the Paragon Wall is not mounted in direct contact with the ceiling, a suspension kit is available which simplifies the task of lowering it to hang at the level desired.

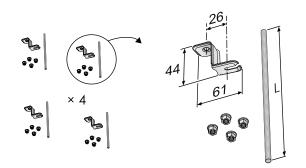



Figure 20. Suspension kit SYST MS M8

#### Venting nipple

A venting nipple with push-on connection can be utilised in combination with type SYST FS F20 flexible hoses. This is normally not needed, but can be an option if the coil in the paragon Wall is at the highest point on the water loop.

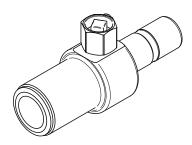



Figure 22. Venting nipple, SYST AR

#### **Flexible hoses**

In applications in which you desire to avoid risk of movement in the pipe system caused by heat expansion, you can advantageously utilize flexible hoses for the connection of chilled water and hot water. Eventual vibrations via the pipe system are at the same time diminished to an absolute minimum.

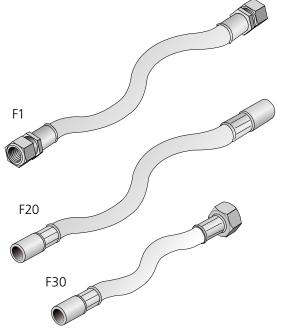



Figure 21. Flexible connection hose, SYST FH



# Factory-fitted control equipment

Optional: Orders can be placed for factory-fitted control equipment for the PARAGON Wall.

All the options and possible combinations of the same that are sizable in ProSelect are tabulated below.

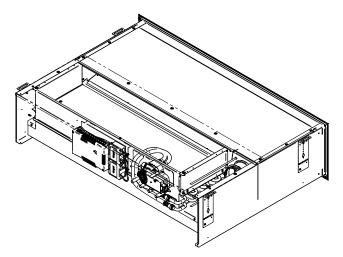



Figure 23. Paragon Wall with factory-fitted Conductor W4.1 controller including RU room unit and 2 pressure sensors as well as CCO valve for cooling and heating.

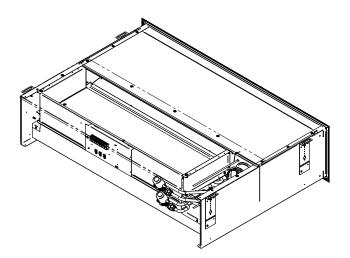



Figure 24 Paragon Wall with factory-fitted LUNA wiring terminals, VEN115 valve and actuator ACTUATORb 24V NC.

### ProSelect

ProSelect is Swegon's sizing program, available at www. swegon.com.

Several options and combinations can be sized in ProSelect.

The factory-fitted control equipment described in figures 23 and 24 is shown below as an example.

| ARAGON c Factory Mounted Controls<br>PARAGON WALL c Grilles                                                                                              |                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                          | Number of accessories 1                                                                                                                                                                                                     |
|                                                                                                                                                          | Controller                                                                                                                                                                                                                  |
|                                                                                                                                                          | CONDUCTOR W4.1 with 2 x pre                                                                                                                                                                                                 |
|                                                                                                                                                          | Valve, Actuator Cool                                                                                                                                                                                                        |
|                                                                                                                                                          | CCO valve                                                                                                                                                                                                                   |
|                                                                                                                                                          | Valve, Actuator Heat                                                                                                                                                                                                        |
|                                                                                                                                                          | CCO valve                                                                                                                                                                                                                   |
|                                                                                                                                                          | Condens sensor                                                                                                                                                                                                              |
|                                                                                                                                                          | No                                                                                                                                                                                                                          |
|                                                                                                                                                          | Room unit / sensors                                                                                                                                                                                                         |
|                                                                                                                                                          | Room unit CONDUCTOR RU (er                                                                                                                                                                                                  |
| Number of accessories 1<br>Controller  Valve, Actuator Cool<br>SYST VEN115 angeled valve + / •<br>Valve, Actuator Heat<br>SYST VEN15 angeled valve + / • | PARAGON Factory Mounted Controls<br>CONDUCTOR W4.1 with 2 x pressure sens<br>(supply- and extract)<br>Compact Changeover (CCO) valve<br>Compact Changeover (CCO) valve<br>Room unit CONDUCTOR RU (enclosed with<br>product) |
|                                                                                                                                                          |                                                                                                                                                                                                                             |
| No                                                                                                                                                       |                                                                                                                                                                                                                             |
| ×                                                                                                                                                        |                                                                                                                                                                                                                             |
|                                                                                                                                                          |                                                                                                                                                                                                                             |
|                                                                                                                                                          |                                                                                                                                                                                                                             |
|                                                                                                                                                          |                                                                                                                                                                                                                             |
|                                                                                                                                                          |                                                                                                                                                                                                                             |
|                                                                                                                                                          |                                                                                                                                                                                                                             |
|                                                                                                                                                          |                                                                                                                                                                                                                             |
|                                                                                                                                                          |                                                                                                                                                                                                                             |
|                                                                                                                                                          |                                                                                                                                                                                                                             |
|                                                                                                                                                          |                                                                                                                                                                                                                             |

PARAGON Factory Mounted Controls LUNA Controller enclosed, connection plinth is attached on product SYST VEN115 angeled valve + ACTUATOR b 24V NC SYST VEN115 angeled valve + ACTUATOR b 24V NC

#### Table 18. Factory-fitted accessories

| · · · · · · · · · · · · · · · · · · ·                                                                    |  |
|----------------------------------------------------------------------------------------------------------|--|
| All the options below and all the possible combinations of the same can be sized in ProSelect.           |  |
| Conductor RE W1 controller incl. RU room unit                                                            |  |
| Conductor RE W3 controller incl. RU room unit                                                            |  |
| Conductor RE W4.1 controller incl. RU room unit and mounted pressure sensor for supply air.              |  |
| Conductor RE W4.1 controller incl. RU room unit and two mounted pressure sensors for supply/extract air. |  |
| LUNA controller (extra wiring terminals are fitted; the controller is packaged together with the module) |  |
| SYST VEN115 straight valve                                                                               |  |
| Straight valve SYST VEN115 + ACTUATORb 24V NC actuator wired to terminals                                |  |
| Only ACTUATORb 24V NC actuator wired to terminals                                                        |  |
| Condensation sensor, wired to terminals                                                                  |  |
| Temperature sensor, wired to terminals (Only in combination with Conductor RE)                           |  |



23

# Installation

#### Installation

The PARAGON Wall is delivered with four mounting brackets designed for installation directly against the ceiling or installation suspended from the ceiling. The mounting brackets allow a certain amount of further adjustment after the comfort module/ceiling mounting brackets has/ have been mounted as accurately as possible. This enables you to position the supply spigot correctly in relation to the wall and the grille. The next step is to connect the air duct, cooling pipes, heating pipes and power supply (24 V AC) to the control equipment. The motor dampers can be directly wired into the controller in the Paragon Wall, if a supply air kit and an extract air kit are included in the installation. The SYST MS M8 suspension kit (must be ordered separately) can be used to advantage in applications in which the PARAGON Wall should not be mounted directly against the ceiling. For detailed mounting instructions, see separate document available for downloading at www.swegon.com.

#### Water connections

If the Paragon Wall is supplied with factory-fitted control equipment, the supply water (cooling and heating) should be connected to Ø 12 x 1.0 mm (Cu) flat pipe end. The return water (cooling and heating with thermal actuator) should be connected to the valves, DN  $\frac{1}{2}$ " male threads. When CCO is supplied all four connections to the system are Ø 12 x 1.0 mm (Cu)

If the Paragon Wall is supplied without control equipment, all the pipes (supply/return – cooling/heating) should be connected to Ø 12 x 1.0 mm (Cu) flat pipe end.

NOTE! Support sleeves must be used if compression ring couplings are fitted. It is important use a pipe wrench to adequately restrain the pipe connections when tightening external connections to prevent damage to the connection pipes.

#### Air connection

A Ø 125 mm air duct including gasket should be connected directly to a fixed nipple.

If the supply air kit is included in the installation, connect the parts in the following order, viewed from the Paragon Wall:

- 1. PARAGON WALL Comfort module
- 2. Air duct, Ø 125 mm
- 3. Sound attenuator, CLA
- 4. Air duct, Ø 125 mm
- 5. CRT motor-driven damper

Note that the supply and extract air kits are also available in  $\emptyset$  100mm. This kit is suitable for use if the space is limited and low airflows are discharged into the room.



# **Connection of control equipment**

#### CONDUCTOR

If the CONDUCTOR control equipment is supplied in factory-fitted condition, the actuator (cooling and heating) is wired to the controller on delivery. The controller must be energized in order to start up the feed-back control functions. This occurs either through the supply of power via a 24 V AC network or through the addition of a separate transformer.

The transformer is available as accessory and must be ordered separately. Note that a transformer normally supplies enough current to operate up to 6 Paragon Wall units with factory-fitted CONDUCTOR under the condition that the units are situated within a reasonable distance, to avoid too drastic voltage drops in the cables.

The room controller is delivered well packaged together with the Paragon Wall. The room controller can either operate with wireless remote control or have a wired cable connection. If the controller operates through wireless communication, 4 size AAA batteries supply it with power. If cable connection is used, the room unit is supplied with power via the same cabling used for communication between the module controller and the room controller. As soon as the module controller and the room controller are energized, you simply enter the ID number of the module controller into the room controller to start wireless communication. If the room controller is connected via a cable, you are not required to enter any ID number.

There are several accessories available to special order for utilizing the energy saving functions available in the CON-DUCTOR with application W4.1 (standard). The motor operated dampers can be easily wired directly to the controller, if the supply and extract air kits are included in the installation.

For hotels there is provision for connecting a key card holder intended to serve as a presence sensor. Of course traditional presence sensors can also be connected, if they are required. There is also an input for a window contact (not accessory), which can be utilized for saving energy when the window is opened. For more information regarding CONDUCTOR W4.1, see the separate product data sheet.

#### LUNA

If the Paragon Wall is equipped with LUNA factory-fitted control equipment, the actuator (cooling and heating) is wired to a terminal block, which is simple to reach after dismantling the recirculation grille in the bottom side of the Paragon Wall. There is no controller mounted in the Paragon Wall, since the intelligence in the LUNA is integrated into the room controller. The controller is then instead delivered separately well packaged together with the Paragon Wall. The controller must be energized in order to start up the feed-back control functions. This occurs either through the supply of power via a 24 V AC network or through the addition of a separate transformer.

The transformer is available as accessory and must be ordered separately. Note that a transformer normally supplies enough current to operate up to 6 Paragon Wall units. This assumes that the units with factory-fitted mounted LUNA are situated within a reasonable distance, to avoid too drastic voltage drops.



#### Maintenance

Since the Paragon Wall operates without any built-in fan, without filter and without a drainage system, very little maintenance is required. In a hotel room or a hospital room, it is normally sufficient to vacuum clean the back side of the coil every six months to remove loose dust. A simple visual inspection of connections and wiping the supply air grille and the condensate drip tray with a damp cloth is also recommended. Avoid aggressive cleaning agents which may harm painted surfaces. Normally a mild soap or alcohol solution is fully adequate for cleaning. Note that the dry operation without condensation minimises the risk of bacteria growth that otherwise is occurs in wet systems.

The requirement for maintenance is yet lower in an office room, since this type of environment is normally much more dust-free, and this allows longer intervals between scheduled maintenance. It is normally enough to clean the coil in an office room once every second year.

# **Dimensions and weights**

#### Table 19 – Weight

| PARAGON Wall c B-NC / PARAGON Wall c A-HC                                          |         |         |  |  |  |
|------------------------------------------------------------------------------------|---------|---------|--|--|--|
|                                                                                    | RY      | RN      |  |  |  |
|                                                                                    |         |         |  |  |  |
| L                                                                                  | Dry, kg | Dry, kg |  |  |  |
| 775                                                                                | 22.6    | 20.8    |  |  |  |
| 900                                                                                | 25.5    | 23.4    |  |  |  |
| 1100                                                                               | 29.5    | 26.9    |  |  |  |
| 1300                                                                               | 33.8    | 30.8    |  |  |  |
| 1500                                                                               | 37.6    | 34.2    |  |  |  |
| PARAGON Wall c B-HC (CCO)                                                          |         |         |  |  |  |
|                                                                                    | RY      | RN      |  |  |  |
|                                                                                    |         |         |  |  |  |
| L                                                                                  | Dry, kg | Dry, kg |  |  |  |
| 775                                                                                | 24.8    | 23      |  |  |  |
| 900                                                                                | 27.7    | 25.6    |  |  |  |
| 1100                                                                               | 31.7    | 29.1    |  |  |  |
| 1300                                                                               | 36      | 33      |  |  |  |
| 1500                                                                               | 39.8    | 36.4    |  |  |  |
| <i>RY:</i> Connection side <i>R</i> = <i>Right;</i> Supply/extract air grille with |         |         |  |  |  |

# Table 20 – Water volume

spigot Y = Yes

| PARAGON Wall c B-NC       |                    |          |  |  |  |  |
|---------------------------|--------------------|----------|--|--|--|--|
|                           | Water v            | olume, l |  |  |  |  |
| L                         | Cooling            | Heating  |  |  |  |  |
| 775                       | 0.8                | 0.3      |  |  |  |  |
| 900                       | 1.0                | 0.4      |  |  |  |  |
| 1100                      | 1.3                | 0.5      |  |  |  |  |
| 1300                      | 1.5                | 0.6      |  |  |  |  |
| 1500                      | 1.8                | 0.7      |  |  |  |  |
| PARAGON Wall              | c A-HC             |          |  |  |  |  |
|                           | Water volume, l    |          |  |  |  |  |
| L                         | Cooling            | Heating  |  |  |  |  |
| 775                       | 1.1                |          |  |  |  |  |
| 900                       | 1.3                |          |  |  |  |  |
| 1100                      | 1.7                |          |  |  |  |  |
| 1300                      | 2.0                |          |  |  |  |  |
| 1500                      | 2.4                |          |  |  |  |  |
| PARAGON Wall c B-HC (CCO) |                    |          |  |  |  |  |
|                           | Water v            | olume, l |  |  |  |  |
| L                         | Cooling or heating |          |  |  |  |  |
| 775                       | 1.1                |          |  |  |  |  |
| 900                       | 1.3                |          |  |  |  |  |
| 1100                      | 1                  | 1.7      |  |  |  |  |
| 1300                      | 2                  | 2.0      |  |  |  |  |
| 1500                      | 2                  | .4       |  |  |  |  |



# PARAGON WALL (R) Right connection

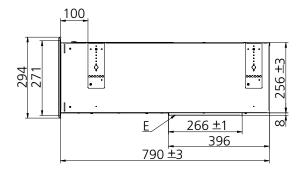



Figure 25. End view

*E* = Condensate drip tray

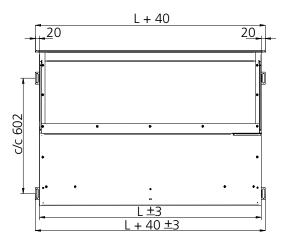
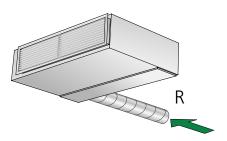




Figure 26. View from above.



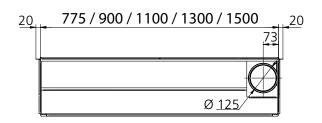



Figure 28. View seen from the rear, air connection R, right side.

| L    | L + 40 | L/2   |
|------|--------|-------|
| 775  | 815    | 387.5 |
| 900  | 940    | 450   |
| 1100 | 1140   | 550   |
| 1300 | 1340   | 650   |
| 1500 | 1540   | 750   |

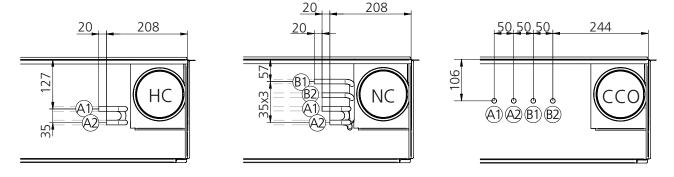



Figure 27. View rear, water connection. A1 = Cooling water, inlet pipe Ø12x1.0 mm (Cu) B1 = Heating water, inlet water Ø12x1.0 (Cu)

A2 = Cooling water, return Ø12x1.0 mm (Cu).

B2 = Heating water, return Ø12x1.0 (Cu).



# PARAGON WALL (L) Left connection

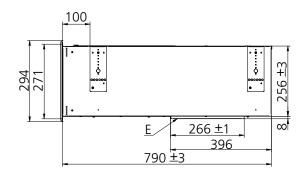



Figure 29. End view E = Condensate drip tray

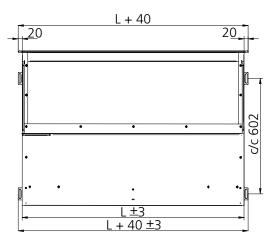
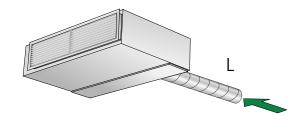
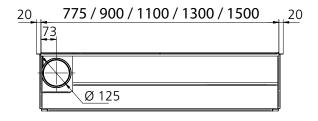





Figure 30. View from above.



| L    | L + 40 | L/2   |
|------|--------|-------|
| 775  | 815    | 387.5 |
| 900  | 940    | 450   |
| 1100 | 1140   | 550   |
| 1300 | 1340   | 650   |
| 1500 | 1540   | 750   |





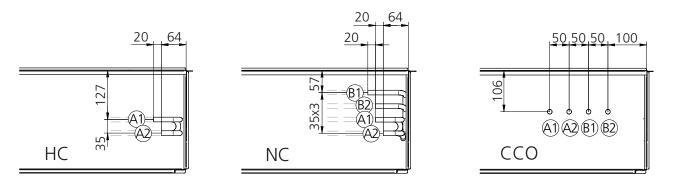



Figure 31. View rear - water connections, A1 = Cooling water, inlet pipe Ø12x1.0 mm (Cu) B1 = Heating water, inlet water Ø12x1.0 (Cu)

A2 = Cooling water, return Ø12x1.0 mm (Cu).

B2 = Heating water, return Ø12x1.0 (Cu).



### **Dimensions**, accessories

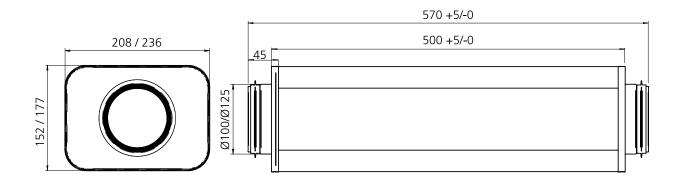



Figure 33. Dimensional drawing sound attenuator CLA Ø 100-500 or Ø125-500. The following components are included in PARAGON T-SAK and PARAGON T-EAK:

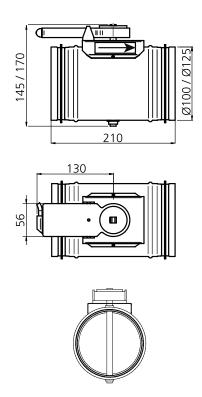
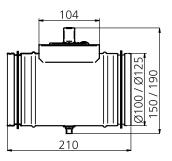




Figure 34. Dimensional drawing motor-driven damper. Included in PARAGON T-SAK-VAV and PARAGON T-EAK-VAV



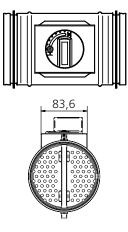



Figure 35. Dimensional drawing commissioning damper. Included in PARAGON T-SAK-CAV and PARAGON T-EAK-CAV



29

### PARAGON Wall

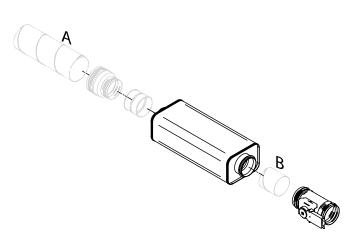




Figure 36. Supply air kit PARAGON T-SAK-VAV-125 Spiral duct not included. Spiral duct A: Min. length: 330mm Spiral duct B: Min. length: 70mm Figure 38. Supply air kit PARAGON T-SAK-CAV-125 Spiral duct not included. Spiral duct A: Min. length: 330mm Spiral duct B: Min. length: 70mm



A

Figure 37. Supply air kit, PARAGON T-SAK-VAV-100 Spiral duct and jointing sleeves dim. 100 not included. Spiral duct A: Min. length: 330mm Spiral duct B: Min. length: 70mm







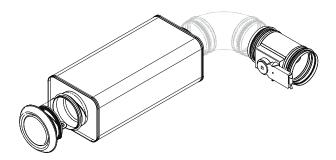



Figure 40. Extract air kit – PARAGON T-EAK

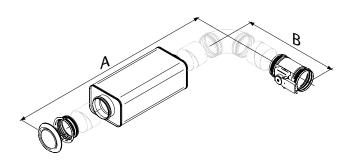



Figure 41. Extract air kit, PARAGON T-EAK-CAV Available for connection sizes 125 and 100. Spiral duct and bends are not included A: Min. length: 770 mm B: Min. length: 360 mm

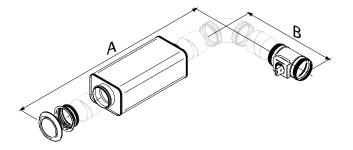



Figure 42. Extract air kit, PARAGON T-EAK-CAV Available for connection sizes 125 and 100. Spiral duct and bends are not included A: Min. length: 770 mm B: Min. length: 360 mm



# Ordering key

# PARAGON WALL Ordering key

Type PARAGON WALL comfort module for cooling, heating, ventilation and control. As standard, factory fitted components are included for plug & play installation.

#### **PARAGON WALL delivery demarcation**

Swegon's limits of supply are at the connection points for water.

At these connection points, the RE pipework contractor connects to plain pipe end and/or male threads towards valves, fills the system, bleeds it and tests the pressure in the circuits.

The ventilation contractor connects to the duct connections with dimensions as specified on the basic size drawing in the section "Dimensions".

EE electrical equipment contractor provides a 24 V AC network power supply or earthed 230 V outlets for a transformer, as well as a junction box, if required, installed in a wall for a room thermostat.

The building contractor cuts the openings in corridor wall for the supply air duct, in the interior wall and suspended ceiling for the supply air and extract air grilles and in the bathroom ceiling for the extract air duct.

The electrical contractor connects the power (24V) and signal cables to the connection terminals with spring-loaded snap-in connections.

Maximum cable cross section 2.5 mm<sup>2</sup>. For safe operation, we recommend cable ends with ferrules.

For connection of electric heating, see the separate installation instructions on www.swegon.se

# PARAGON WALL Ordering key

| PARAGON WALL                                                                                     | C     | aaaa-    | b-    | cccc- | d- | ef |
|--------------------------------------------------------------------------------------------------|-------|----------|-------|-------|----|----|
| Version:                                                                                         |       |          |       |       |    |    |
| Length (mm)<br>775, 900, 1100. 1300 and                                                          | 150   | 0        |       |       |    |    |
| Function<br>B = Cooling and heating                                                              |       |          |       |       |    |    |
| Capacity variant<br>NC - Normal design<br>HC - High capacity design<br>HC CCO - High capacity de | esigr | n with C | CO va | alve  |    |    |
| Connection side<br>R - Right<br>L - Left                                                         |       |          |       |       |    |    |
| Flow variant<br>Upper nozzle row:<br>L, M, H<br>Lower nozzle row:<br>L, M, H                     |       |          |       |       |    |    |



# Available to order, kit and accessories

| Supply air kit                | VAV: PARAGON CRTc motor-driven<br>damper with tight damper blade<br>with damper actuator and CLA<br>sound attenuator                                              |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | CAV: PARAGON CRPc manually<br>adjustable damper with perforated<br>damper blade and CLA sound<br>attenuator                                                       |
| Extract air kit               | VAV: PARAGON CRTc motor-driven<br>damper with tight damper blade<br>with damper actuator, CLA sound<br>attenuator and extract air register<br>with mounting frame |
|                               | CAV: PARAGON CRPc manually<br>adjustable damper with perforated<br>damper blade, CLA sound attenuator<br>and extract air register with mount-<br>ing frame        |
| Flexible connec-<br>tion hose | Connection hose supplied with<br>clamping ring coupling, push-on<br>coupling or union nut.                                                                        |
| Assembly piece                | Ceiling mounting bracket and<br>threaded rod for mounting in ceiling.<br>Double threaded rods with thread<br>lock are also available.                             |
| Venting nipple                | Venting nipple with push-on cou-<br>pling for connection to the return<br>pipe for water, diameter: 12 mm                                                         |
|                               | pries for the control equipment, see and LUNA product datasheets.                                                                                                 |

# Ordering key, accessory kit

| Supply air kit        | PARAGON       | C- | T-SAK-VAV- | bbb |
|-----------------------|---------------|----|------------|-----|
| Version:              |               |    |            |     |
| Kit with motor-driven | n damper      |    |            |     |
| Ø100; Ø125            |               |    |            |     |
|                       |               |    |            |     |
| Supply air kit        | PARAGON       | C- | T-SAK-CAV- | bbb |
| Version:              |               |    |            |     |
| Kit with manually adj | ustable dampe | r  |            |     |
| Ø100; Ø125            |               |    |            |     |
|                       |               |    |            |     |
| Extract air kit       | PARAGON       | C- | T-EAK-VAV- | bbb |
| Version:              |               |    |            |     |
| Kit with motor-driven | n damper      |    |            |     |
| Ø100; Ø125            |               |    |            |     |
|                       |               |    |            |     |
| Extract air kit       | PARAGON       | C- | T-EAK-CAV- | bbb |
| Version:              |               |    |            |     |
| Kit with manually adj | ustable dampe | r  |            |     |
| Ø100; Ø125            |               |    |            |     |
|                       |               |    |            |     |



### PARAGON Wall

# **Ordering Key, Accessories**

| Assembly piece                                       | SYST MS M8- | aaaa- | b |
|------------------------------------------------------|-------------|-------|---|
| Length of threaded rod (mm):<br>200; 500; 1000       |             |       |   |
| Туре:                                                |             |       |   |
| 1=One threaded rod<br>2=Two threaded rods and one th | nread lock  |       |   |
|                                                      |             |       |   |

| Flexible connection hose,<br>(x1)                                                      | SYST FH F1- | aaa- | 12 |
|----------------------------------------------------------------------------------------|-------------|------|----|
| Clamping ring coupling (Ø12 mm<br>against pipe at both ends<br>(excl. support sleeves) | n)          |      |    |
| Length (mm):<br>300; 500; 700                                                          |             |      |    |

| Flexible connection hose,<br>(x1)                          | SYST FH F20- | aaa- | 12 |
|------------------------------------------------------------|--------------|------|----|
| Quick-fit coupling push-on (Ø<br>against pipe at both ends | i12 mm)      |      |    |
| Length (mm):<br>275; 475; 675                              |              |      |    |
|                                                            |              |      |    |

| Flexible connec<br>(x1)                                                                                    | tion hose, | SYST FH F30- | aaa- | 12 |
|------------------------------------------------------------------------------------------------------------|------------|--------------|------|----|
| Quick-fit coupling, push-on (12 mm dia.)<br>against pipe on one end, G20ID sleeve nut on<br>the other end. |            |              |      |    |
| Length (mm):<br>200; 400; 600                                                                              |            |              |      |    |

Venting nipple

SYST AR12

# **Specification text**

Example of a specification text according to VVS AMA. PCT.312 Duct connected chilled beams.

KB XX

Swegon's PARAGON WALL comfort module that supplies air via a common supply air and recirculated air grille.

For rear edge installation in a wall or ceiling, with the following functions:

- Cooling
- Heating, water
- Ventilation
- VariFlow for simple adjustment of the airflows
- ADC
- Ø125 mm duct connection
- Built-in circulating air opening
- Coil and control equipment, if required, accessible via the cover
- Cleanable
- Fixed measurement tapping with hose
- Supply air and recirculating air grilles painted in standard shade of white (RAL 9003)

#### Factory-fitted accessory kit:

- PARAGON c-T-SAK-VAV-aaa xx pcs.
- PARAGON c-T-SAK-CAV-aaa xx pcs.
- PARAGON c-T-EAK-VAV-aaa xx pcs.
- PARAGON c-T-EAK-CAV-aaa xx pcs.

#### Accessories:

- Commissioning damper SYST CRPc 9-125, xx pcs.
- Assembly piece, SYST MS M8 aaaa-b
- Flexible connection hose, SYST FH F1 aaa- 12 xx pcs.
- Flexible connection hose, SYST FH F20 aaa- 12 xx pcs.
- Flexible connection hose, SYST FH F30 aaa- 12 xx pcs.
- Venting nipple, SYST AR 12 xx pcs.

#### etc.

Specify the quantity separately or with reference to the drawing.

#### **Contractor demarcation**

- Contractor demarcation at connection point for water and air as in outline drawing.
- At the points of connection the pipe contractor connects to 12 mm plain pipe end after which the ventilation contractor connects the Ø125 mm insertion piece (sleeve).
- The pipe contractor fills, bleeds, tests the pressure and assumes responsibility for the design water flows reaching each branch of the system and the unit.
- The ventilation contractor conducts initial commissioning of the airflows

